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Abstract 
 This paper presents results of experimental and 

theoretical investigations of transverse beam stability at 
injection to Fermilab Booster and discuses a novel 
scheme for transition crossing allowing to avoid the 
longitudinal emittance growth related to the transition.  At 
reduced chromaticity a multibunch high order head-tail 
mode develops with growth time of 12 turns at fractional 
part of tune close to zero. An estimate of the growth rate 
based on known sources of impedance results in  
significantly smaller value and cannot explain observed 
instability growth rate. 

INTRODUCTION 
Booster [1] is a fast cycling proton synchrotron 

operating at 15 Hz. To exclude the eddy currents excited 
in the vacuum chamber by fast changing magnetic field its 
vacuum chamber is formed by poles of laminated 
combined function dipoles. That creates large contribu-
tions to transverse and longitudinal impedances affecting 
both transverse and longitudinal beam stability. Presently, 
transverse instabilities are suppressed by large chromatici-
ty, which negatively affects the dynamic aperture and the 
beam lifetime. Earlier attempts to stabilize the instability 
by transverse feedback system were unsuccessful. This 
paper presents results of studies aimed to understand 
mechanisms of instability at injection. It also discusses the 
beam dynamics at the transition crossing and considers a 
novel scheme allowing one to suppress the longitudinal 
emittance growth at transition. Main Booster parameters 
are presented in Table 1. 

1. BEAM DYNAMICS AT INJECTION 
The instability was evoked by reducing both vertical 

and horizontal chromaticities. This caused instability in 
both planes and partial beam intensity loss started at turn 
150 after injection. Four channel digital scope running 
with sampling time of 0.4 ns recorded beam signals of 
horizontal and vertical beam position monitors (BPM) 
with 15 cm long plates. Total recording time of 1.6 ms 
represents ~700 turns. To maximize the resolution for 
transverse beam motion the signals of two BPM plates for 
each BPM were combined at a wide band hybrid making 
the sum and difference signals. The measurements were 
performed for nominal and half of nominal beam 
intensities. Off-line treatment of the data included 
marking boundaries for each bunch, subtracting bunch 
offsets from the differential signal, and integrating bunch 
signals to obtain the density and dipole moment distribu-
tions. The following bunch parameters were computed for 
each bunch: AC bunch intensity, longitudinal and 

transverse centers of gravity, rms bunch length and 
transverse dipole moments. Note that the relative 
revolution frequency change during the first 200 turns is 
about 10-3, and needs to be taken into account when bunch 
boundaries are marked.  Beam positions (offsets) are also 
changing fast and they were corrected for each turn.  

Table 1: Booster parameters 
Energy 0.4 – 8 GeV 
Transition energy 5.1 GeV 
Total number of particles 4.5·1012 
Circumference 474.2 m 
Harmonic number, q 84 
Betatron tunes, Qx/Qy 6.82 /6.81 
RF voltage 0.7- 0.9 MV 
Injection type H-, 10 turns 

0 50 100 150
0

1

2

3

4

5

n1 n2
σs [ns]

σyosc

Ibeam  [abitrary units] 

σxosc

nturn  
Figure 1: Changes of beam parameters during first 150 
turns; red line – AC beam intensity, blue line – rms bunch 
length, vertical (brown line) and horizontal (green line) 
rms transverse dipole moments. Dotted lines present 
exponential fits to the rms dipole moments inside a bunch. 
All signals are averaged over all 84 bunches; beam 
intensity - 4.5·1012. 

The following sequence of actions happens during 
injection (see Figure 1). First, injection orbit bump is 
created just before injection. Then, the linac beam is 
injected during 5 or 10 turns for half or full beam 
intensity, respectively. When the injection is finished the 
orbit bump is switched off (it takes 10-20 turns) and RF 
voltage is adiabatically increased causing beam to be 
bunched at turn 70 with RF voltage continuing to grow.  
The first sign of the instability appears at turn 80 causing 
the beam intensity drop at turn 150. 

An accurate knowledge of betatron and synchrotron 
tunes is important to understand the nature of the 
instability. Small oscillations excited by injection process 
were helpful to determine the tunes. Figure 2 presents 
turn-by-turn vertical positions for all 84 bunches and 
corresponding spectrum.  Although betatron motion 
decays fast the direct fitting by exponentially decaying 
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sinusoid allowed us to determine the fractional part of 
tune with three digits accuracy. The decay time is used to 
estimate the lattice chromaticity (see below). To 
determine the synchrotron tune we analyzed the frequency 
of quadrupole synchrotron oscillations excited in the 
course of beam bunching. They are clearly visible on the 
rms bunch length presented in Figure 1. The synchrotron 
tune at turns 50 to 120 grows from 0.03 to 0.06 in 
accordance with expectations. Because of beam loading 
and beam space charge the synchrotron tune dependence 
on time varies with beam intensity. Tables 2 and 3 
summarize results of measurements. 
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Figure 2: Dependence of vertical bunch-by-bunch 
positions excited by injection process on turn number and 
corresponding spectrum; beam intensity 4.5·1012. 

Table 2: Results of measurements of tunes and damping 
times at turns 30 to 60 

Number of particles 2.3·1012 4.5·1012 
Horizontal tune, Qx 6.830 6.825 
Vertical tune, Qy 6.831 6.819 
X-plane decoherence time, turns 15 13 
Y-plane decoherence time, turns 18 16 
Knowing synchrotron tune and longitudinal density 

distribution one can obtain the longitudinal distribution 
function. Fitting to the data of turn 69 corresponding to 
the end of bunching process yields (see Figure 3): 
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φ ∈[-π, π] is the longitudinal coordinate inside RF bucket, 
and Ωs is the synchrotron frequency. Corresponding 
longitudinal emittance (area in the phase space including 
100% particles) is 0.06 eV⋅s per bunch.   

The measurement results clearly demonstrate that the 
instability does not develop before bunches are formed; 

but when it finally starts it looks rather unusual: the dipole 
moment distribution for all bunches on nearby turns 
exhibits almost the same pattern only slowly moving in 
the direction opposite to the beam direction as shown in 
Figure 4. Note that although the data are presented for 
every 5-th turn the distributions for missed turns are 
monotonically changing between the data for presented 
turns. Such behavior corresponds to the head-tail 
instability developing at tunes equal to Qx,,y −7 + 3Qs. 
Their values are close to zero (see Table 3). At full beam 
intensity the horizontal motion in the bunch tail is larger 
than in the head pointing out that the horizontal instability 
is the strong head-tail instability. Therefore data for half 
of nominal intensity, where the head-tail is weak, were 
used for impedance estimates considered below. 
Table 3: Results of measurements of instability growth 
times and synchrotron tune 

Number of particles 2.3·1012 4.5·1012 
Synchrotron tune, Qs at turn 100 0.047 0.057 
ΔQx = Qx  −7 + 3Qs  −0.029 −0.004 
ΔQy = Qy  −7 + 3Qs −0.028 −0.010 
X instability growth time, turns 18 12 
Y instability growth time, turns 14 14 
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Figure 3: Measured (red dots) and fitted (blue dashed line) 
longitudinal density distribution at turn 69; beam intensity 
4.5·1012. 

2. CHROMATICITY ESTIMATE 
Beam decoherence at turns 30 to 60 allows one to make 

an estimate of chromaticities. Neglecting the effect of 
impedance on the beam stability and that the beam is 
partially bunched one can write the damping rate as: 

ppdecoh nn /
1. Δ

− −≈ σηξ     ,  (3) 

where η = α – 1/γ2 is the slip factor (η = −0.458 at 
injection), ξ is the chromaticity and n is the mode number 
determined so that the lab-frame betatron frequency is: 

( )nQn +≈ 0ωω  .  (4) 
For data presented in Table 2, n = −7 and one can neglect 
nη in comparison with ξ. This yields for absolute values 
of chromaticities: |ξx | ≈ 85 and |ξy | ≈ 70. As will be seen 
later the real part of transverse impedance at this 
frequency is sufficiently small and does not make 
significant correction for chromaticities.  
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Figure 4: Measured dipole moment distributions for x- 
(top) and y-planes (bottom) over bunch length for every 5-
th turn (turns from 93 to 113); beam intensity 4.5·1012. 

The signs of chromaticities can be determined from the 
direction of head-tail wave propagation (see Figure 4). In 
the case of weak head-tail effect the “air-bag” model 
yields that the dependence of average transverse position 
along the bunch is [2]: 
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where smQnQQ ++=Δ  is the mode tune, 0/ RLb ηξκ =  
is the head-tail phase, Lb is the bunch length, R0 is the 
machine radius, m is the synchro-betatron mode number 
and ψ is an arbitrary phase. Eq. (5) yields that the velocity 
of the head-tail wave is: 
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The mode tunes for parameters of our experiment are 
presented in Table 2. Data for 2.3·1012 particles (where 
the weak head-tail approximation is better applicable) 
were used to estimate the chromaticity. The betatron wave 
velocities are d(Δs/Lb)/dt ≈ -0.022 and -0.025 turn-1, 
correspondingly, for x and y-planes. That yields the head-
tail phases: κx ≈ 8 and κy ≈ 7 and the negative signs of 
both chromaticities. Described above chromaticity 
measurements yields ~2 times smaller values for κx,y if Lb 
equal to one forth of full bucket length is used. 
Discrepancy is apparently related to the poor accuracy of 
ΔQ, which small value is obtained as difference of two 
large numbers, and insufficient accuracy of Eq. (5) 
ignoring particle interaction and bunch structure. 

3. INSTABILITY GROWTH RATE 
To estimate the instability growth rate for bunched 

beam we use the “air-bag” model [2]. For weak head-tail 
interaction it yields that the complex betatron tune shift is: 
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where I0 is the beam current, c is the speed of light, m and 
e are the particle mass and charge, γ and β are its 
relativistic factors, Z⊥(ω) and R0 are the ring impedance 
and average radius, ( )bsk kNmQnQ +++= 0ωω , and Nb 
is the number of bunches which for Booster coincides 
with harmonic number q. Taking into account that the 
instability growth rate per turn is ( )Qmn δπλ Im2, −= , and 
that for observed instability n = -7 and m = 3, and using 
instability growth rates for 2.3·1012 particles from Table 3 
one obtains the effective impedances to be: Re(ZXeff -7,3) = 
43 MΩ/m, Re(ZYeff -7,3) = 55 MΩ/m.  

The imaginary part of impedance can be found from 
tune dependence on the beam intensity presented in Table 
2. At that time the beam is not completely bunched and 
one can use the continuous beam approximation to 
estimate the impedance. In this case the tune shifts for 
horizontal and vertical betatron motions are [3]:  
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where ZD(ω) is the detuning impedance (Fourier 
transform of the detuning wake). For n = -7 that yields: 
Im(ZX(ω-7)-ZD(0)) = 24 MΩ/m and Im(ZY(ω-7)+ ZD(0)) = 
58 MΩ/m, where ω-7=76 kHz. Earlier measurements [4] 
with beam motion excited by the vertical kicker yielded 
very close value for the vertical tune shift. The horizontal 
tune shift was not measured. Note that in distinction from 
measurements presented here, the kicker measurements 
excite many multi-bunch modes while BPMs report a 
single beam position per turn combined from unknown 
weighted sum of bunch signals. Thus, the frequency at 
which the response is measured is not well determined. 

4. TRANSVERSE BOOSTER IMPEDANCE 
In the first approximation we can consider that the 

Booster impedance is formed from two major 
contributions coming from the round stainless steel 
vacuum chamber and the laminated dipoles.  

The impedance per unit length of round vacuum 
chamber with thin wall was computed in Ref. [5]. The 
result is: 
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where a and b are the inner and outer radii of vacuum 
chamber, d≡b-a<<a is its thickness, ( ) δ/1 ik += , 



πσωδ 2/c=  is the skin depth, and Ω≈= 377/40 cZ π  
is the impedance of free space. The total length of such 
vacuum chamber is 197 m, a=43 mm, and d0=1.6 mm. 
Figure 5 shows corresponding contribution to the 
impedance. As one can see its real part achieves 
maximum at 3 kHz where ad≈δ . Its value does not 
depend on the vacuum chamber conductivity and is: 

( ) 2
0

max 4
Re

a
iZZL π

β
≈⊥

  .    (11) 

The imaginary part of impedance achieves its maximum 
at zero frequency where it is determined by pure 
electrostatic beam interaction with vacuum chamber.   

Computation of the impedance for laminated vacuum 
chamber in the entire frequency range is a complicated 
problem and as far as we know has not been solved. 
Before we consider it let us discuss the impedance of flat 
vacuum chamber manufactured from non-laminated steel. 
As follows from results of Ref. [6] the horizontal and 
vertical impedances per unit length are: 

( ) ( )

( ) ( ) ,
)cosh()sinh(

exp/
122

,
)sinh()cosh(

exp/
242

0

2
2

2
0

0

2
2

2
0

⎥
⎦

⎤
⎢
⎣

⎡
+

−−
+=

⎥
⎦

⎤
⎢
⎣

⎡
+

−−
+=

∫

∫
∞

∞

uuuk
uduukau

a
ZiZ

uuuk
uduukau

a
ZiZ

Ly

Lx

μβπ
βπ

μβπ
βπ   (12) 

where the vacuum chamber is assumed to be confined by 
two infinite magnetic blocks filling upper and lower half 
spaces and separated by distance 2a, μ is the magnetic 
permeability, and similarly to the round vacuum chamber 

( ) δ/1 ik +=  and πσωμδ 2/c= . There are two types of 
dipoles: focusing and defocusing. The summed length of 
each type is 139 m, and the half-gaps are 20.8 and 28.5 
mm, respectively. Figure 5 shows corresponding 
contributions to the impedances. As one can see the real 
parts of both impedances achieve maximum at ~100 kHz 
(where μδ ≈ a). Their values do not depend on vacuum 
chamber conductivity and μ. They are: 

⎩
⎨
⎧

≈
≈

≈⎥
⎦

⎤
⎢
⎣

⎡
.89.0/,5.0
,372.0/,336.0

4
Re 2

0

max
μδ

μδ
π

β
a

a
a

iZ
Z
Z

Ly

Lx             (13)  

With frequency decrease, both impedances decrease and 
approach zero at zero frequency. The reason of impedance 
decrease at small frequencies is related to the increase of 
skin depth with subsequent magnetic flux “shortening” by 
the wall magnetism; so that the tangential component of 
beam magnetic field is diminishing. That causes decrease 
of currents excited in the vacuum chamber, and, 
consequently, decreases power loss and impedance. Note 
that the real parts of impedances for the round thin wall 
and flat magnetic vacuum chambers achieve almost the 
same maximum value. Actually, the smaller value for flat 
vacuum chamber is related to its more open geometry 
than to its magnetism. This is a manifestation of more 
general law which limits the absolute value of wide-band 
transverse impedance so that ( )βπ 2

0max
2/ aZZL ≤⊥

 (see 
“careless limit” in Ref. [2]). 

To make an estimate of impedance introduced by 
laminated dipoles we take into account that for the given 

skin depth both the resistance and the magnetic 
conductivity of vacuum chamber per unit length are 
increased by factor 2a/dlam where dlam is the lamination 
thickness. That results in that the horizontal and vertical 
impedances can be approximated by Eq. (12) where ka/μ 
need to be replaced by kdlam/2μ. At high frequencies this 
result coincides with the result obtained in Ref. [7]. 
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Figure 5: Contributions to the real (top) and imaginary 
(bottom) parts of impedance from different pieces of 
vacuum chamber; ZR – round vacuum chamber, ZxL and 
ZyL – laminated dipoles with μ=1000, ZxnL and ZynL – mark 
contributions corresponding to non-laminated dipoles. 

To get the total ring impedances one needs to sum 
contributions of round vacuum chamber and focusing and 
defocusing laminated dipoles with fudge factors 
accounting the beta-function variation. They are equal to: 
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Integration over Booster design lattice yields: for focusing 
dipoles – kx = 2.64, ky = 0.65; for defocusing dipoles – kx 
=1.00,   ky =1.62; for round vacuum chamber – kx = 0.64, 
ky = 1.82. Figure 6 presents resulting total impedances.  

Computation of effective impedances responsible for 
the tune shift yields: Im(ZX(ω-7)-ZD(0)) = 26 MΩ/m and 



Im(ZY(ω-7)+ ZD(0)) = 85 MΩ/m. Taking into account that 
the estimate of impedance for laminated dipoles is rough 
at small frequencies and the effects of bunching and 
momentum spread are completely ignored one can 
conclude that there is a satisfactory agreement with the 
measurement result presented at the end of Section 2.  
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Figure 6: Real (top) and imaginary (bottom) parts of 
Booster total impedances and imaginary part of detuning 
impedance. 

There is large disagreement in the estimate of real part 
of impedances. From the experiment we know multi-
bunch and head-tail modes (n = −7, m = 3). That sets 
frequencies in the sum of Eq. (8) to be ωk/2π = −0.012 ± 
37.9k MHz. For ξ ≈ −70 the head-tail phase is κ = 3.4 and 
the Bessel function J3(κ)2 is close to its first maximum. 
That maximizes the contribution for addend with k = 0 
(f≈12 kHz). Also note that other contributions coming 
from positive and negative frequencies (±k) in Eq. (8) 
partially cancel each other, thus reducing the sum. The 
considered above estimate of laminated dipole impedance 
ignores the plate-to-plate capacitance which reduces the 
real part of impedance at frequencies above ~500 MHz. 
μ=1000 is used in the impedance estimate in the entire 
frequency range. This cannot be correct at high 
frequencies where μ should be decreasing due to skin 
depth becoming smaller than the domain size.  Therefore 
a frequency range of 0 to 500 MHz (k ∈ [-13, 13]) is used 
to compute the effective impedances of Eq. (8). That 
results in 6 and 3.2 MΩ/m for horizontal and vertical 

planes, correspondingly, where contributions coming 
from zero term (k=0) are 0.37 and 0.55 MΩ/m. Although 
the model correctly points out that the real part of 
horizontal impedance is larger than for the vertical one, it 
predicts the instability growth rates and the real parts of 
impedances by an order of magnitude smaller than the 
measured values. The reason of the discrepancy is not 
clear. It hardly can be explained by underestimation of the 
impedance for laminated magnets. It is already close to its 
theoretical maximum in the required frequency range. 
There is a possibility of unaccounted impedance, but also 
the instability can be related to the presence of electrons 
stored in the beam. The residual gas pressure in Booster is 
about 10-7 Torr. That corresponds to the beam space 
charge compensation time of about 0.1 sec. Although it is 
too long to make any effect at 200 turns the multipactor 
discharge can greatly accelerate the production of 
electrons. Further experimental studies are required to test 
this possibility. 

5. TRANSITION CROSSING WITH RF 
VOLTAGE JUMP TECHNIQUE 

Measurements of beam dynamics at injection were 
performed similar to the considered above transverse 
instability measurements. The sum signal of a BPM was 
digitized with 0.2 ns sampling time. Then, the signal of 
each bunch was integrated numerically to obtain the 
particle density along the bunch. Figure 7 presents 
dependence of bunch length (computed using few 
different algorithms) on time in vicinity of transition. One 
can see that the bunch size starts to shrink approximately 
0.2 ms after transition and after achieving a minimum 
blows up. After few synchrotron periods these 
synchrotron oscillations result in the longitudinal 
emittance growth.  

 
Figure 7: Dependence of bunch length (computed using 
different methods from measured data) on time in vicinity 
of transition crossing. Transition time is shown by the 
vertical line. 

Observed longitudinal dynamics is consistent with 
development of the negative mass instability due to 
longitudinal space charge force. First, let us consider a 
simple linear model with a parabolic density distribution 



and linearized RF voltage over bunch length. Standard 
procedure results in a system of differential equations 
describing evolution of the bunch ellipse in the phase 
space. The solution was carried out numerically for 
sinusoidally changing bending field and given 
dependence of accelerating voltage on time. The solid line 
on the top picture of Figure 8 presents results of 
numerical simulation for nominal parameters of transition 
crossing. One can see close resemblance with 
measurement results presented in Figure 7.   Examination 
of the solution shows that the sign change of the space 
charge force from repulsion to attraction after transition 
crossing causes large amplitude quadrupole synchrotron 
oscillations. More detailed multi-particle simulations with 
ESME [8] show that after few synchrotron oscillations 
they decohere causing longitudinal emittance growth. 
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Figure 8: Dependence of bunch length (top picture) on 
time simulated in linear model in vicinity of transition 
crossing: solid line – no fast change in RF voltage, dashed 
line – RF voltage has two pulses as shown in the bottom 
picture. Transition time is shown by the vertical line 

The following procedure was suggested to prevent a 
development of such oscillations. Approximately quarter 
synchrotron period before transition crossing the 
accelerating voltage is rapidly increased. That causes the 
bunch to be overfocused. Actually the bunch length 
changes comparatively little due to small particle mobility 
at transition but momentum spread in the bunch is 
strongly amplified.  Voltage is returned to its nominal 
value at transition. The accumulated momentum spread 
causing bunch shortening before transition is now causing 
the bunch lengthening which prevents bunch collapse due 
to space charge force. Using the second smaller voltage 
pulse after half synchrotron period allows one to suppress 
synchrotron oscillations after transition as shown by 
dashed line in Figure 8. Figure 9 shows results of ESME 

simulations with and without voltage manipulations 
clearly demonstrating suppression of longitudinal 
emittance growth. 

This method was tested in Booster and demonstrated 
expected reduction of emittance growth. Its use in 
operations for a few shifts was also successful. Two 
hardware problems are pending its permanent use in 
Booster operations. The first is related to insufficient time 
resolution of the low level RF timing; and the second one 
is high sensitivity to RF station loss because Booster RF 
does not have sufficient voltage excess. 

 Figure 9: Particle distribution over bunch length at the 
end of Booster cycle simulated with ESME: top – no RF 
manipulations, bottom – RF manipulations are on. 
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